October 3, 2009 DUSEL Science Workshop

Vertical Experiments Group

Yuri Kamyshkov, University of Tennessee kamyshkov@utk.edu

Vertical Experiments proposed for DUSEL

- NNbar Experiment Matter to Antimatter Transformation: SD Universities, NCSU, IU, UT, CSUDH, CNA Engineers, NIST, LANL, ORNL, KEK, PNPI, ILL, JINR + Theory group (contact Yuri Kamyshkov/UT)
- Gravity Waves Detection by Atomic Interferometry: Stanford U, SDSMT, NASA/Ames, + Theory Group (contact Mark Kasevich / Stanford U.)
- Facility for Study Physics of Cloud Formation: SDSMT, US, UK, Germany, Israel, Japan, Argentina, China, and Russia (contact person John Helsdon /SDSMT)
- Mirror Matter Transformation Search: PNPI, IPNI, JINR/Russia, ILL/France, INFN/Italy (contact person Anatoly Serebrov/PNPI)
- **Study of Diurnal Earth rotation**: (contact person Bill Roggenthen/SDSMT) →E&O project

Unique for DUSEL. Exists nowhere in the world!

→ DUSEL Vertical Facility Collaboration

Shaft requirements for different experiments

Scope of Vertical Shaft Facility S4 proposal

Experiment → Description ↓	[1] NNbar Search	[2] Atom Interferometry	[4] Mirror n Search	[3] Cloud Physics	[5] Diurnal Rotation
Shaft length	1.5 km	1 - 4 km	1.5 km	0.1 – 0.5 km	0.1 – 1.5 km
Tube diameter	4 - 7 m	0.3 m	4 - 7 m	3 - 5 m	1 m
Straightness [†]	< 10 cm	< 5 cm	< 10 cm	< 50 cm	< 10 cm
Verticality	< 50 mrad	< 10 mrad	< 50 mrad	< 100 mrad	< 10 mrad
Pressure	10 μPa	< 0.1 μPa	10 μPa	0.3-1.0 atm	(10 μPa)
Mag. Shield	~ 1 nT	~ 1 nT	~ 1 nT	N/A	N/A
Purpose of experiment	$n \to \overline{n}$ appearance	gravity wave detection	neutron disappearance	atmos. physics facility	E&O facility

Facility development:

- availability of the vertical shafts or new shafts
- measurement of vertical shaft parameters
- o generic questions of the vertical experiments construction and engineering
- cost estimate

Our VSF S4 proposal was not supported.

Should we walk away from DUSEL?

Other non-S4 proposals? New future proposals?

To whom this question is addressed?

What should be the answer?

NSF criteria: current, transformational, world-leading

There should be a path for becoming *current*

How to become current (for discussion)

- PAC proposed by DUSEL community with the charge defined by community
- DUSEL PAC should be recognized by NSF/DOE
- Non-S4 and New Proposals approved by PAC can seek for R&D support through NSF/DOE
- In interactions with PAC the proposals can be transformed, fit, staged, descoped, reduced, redirected, ... or rejected. It should be an interactive process. Users should know whom they can talk with.
- PAC helps Lab to create vision of long-range research program flexible and adoptive to new ideas
- PAC interacts and coordinates with HEPAP, NSAC, and other advising panels
- Lab helps PAC and individual proposals by providing information, engineering consultations, cost estimate, support in initial measurements (like EIP), ...
- PAC and Lab help new proposals through CD0 CD1 stages of development
- "Non-S4 and New Ideas Workshop" (Janet Conrad) as discussion forum

Let me use as an example a vertical experiment proposal for neutron → antineutron transformation search to illustrate the interactions and functions we are looking for

I hope it might be similar model for other

- vertical experiments
- non-S4 experiments
- new and future proposed experiments

Ultimate configuration that matches ambitious sensitivity goals

Reduced configuration

The Neutron Source can be e.g.

- □ d-t generator(s): D + T \rightarrow ⁴He + n
- RFQ accelerator of p or d with nuclear target
- high-current cyclotron with spallation target

Reduced NNbar approach:

- □ no reactor
- □ neutron source (R&D)
- □ much smaller cost (still need estimate)
- ⇒ still unique experiment for underground lab
- ⇒ still no background when 1 detected event = discovery
- path for study and development of higher sensitivity
- ⇒ still need study for available shafts or new construction (R&D)
- ⇒ still need generic understanding of vertical construction/engineering (R&D)
- ⇒ use high tech for sensitivity enhancement (R&D)
- ⇒ still need R&D for magnetic shielding, supermirrors, ...

Development of colder neutron moderators 35K →2K

MC simulation example: source dia 25 cm, target dia 2m, source-target distance 1150 m, $3\theta_{\text{C}}$ reflector starts at z=2m with dia 1 m; ends at z=33 m with dia 4 m

Temperature of neutron spectrum, K

Development of high-m neutron reflectors

Economically possible in future

M.Hino et al., Nucl. Instrum. Methods A529 (2004) 54

Conclusions

- NNbar proposal scope can be modified to match existing constraints
- Hope that DUSEL PAC will help us to define the scope leading to the "current" status
- Other Vertical experiments can do the same. Interaction with PAC is crucial here
- We can continue act as Vertical Facility Collaboration for generic common vertical construction and engineering issues
- Through PAC we need path to CD0 and CD1 reviews

Survey of Magnetic Field in the Ross and Yates Shafts at Sanford Lab July 2009

One of "Early Implementation Proposals" of Vertical Facility Collaboration

Goal: to check that there are no magnetic anomalies in Homestake vertical shafts

Measurement Team:

George Duffy (UT undergraduate summer project)

Mark Hanhardt (Measurement Team - magnetometer, tablet, cage speed)

Dana Byram (Measurement Team - magnetometer positioning, cage speed)

Connie Giroux (Measurement Team - cage speed)

Jim Hanhardt (Shaft Safety Supervisor, Measurement Team - cage speed)

Jared Thompson (Measurement Team - cage speed and data recording)

Kara Keeter (Measurement Team - cage speed)

Brian Lowery, Chad Ronish (High-school teachers)

Jaret Heise, Reggie (Observers)

Honeywell 3-axes Magnetometer HMR2300 with range ± 2 Gauss, accuracy 1%, rate 20 Hz

Outside measurements

Magnetic Field Predictions for Lead, SD

Lead, SD coordinates: Elevation 5,213 ft

Latitude 44° 21′ 03″ N

Longitude 103° 45′ 57″ W

Prediction for date: July 7, 2009

Level	Elevation	North	East	Down	Total		
surface	5213'	18,360.3 nT	2,852.5 nT	52,180.3 nT	55,389.7 nT		
-4850′	363'	18,385.2 nT	2,807.1 nT	52.106.0 nT	55,325.6 nT		
IGRF10 GeoMag Model							

Level	Elevation	North	East	Down	Total		
surface	5213'	18,368.1 nT	2,846.1 nT	52,192.1 nT	55,403.1 nT		
-4850′	363'	18,381.4 nT	2,849.2 nT	52.231.7 nT	55,445.0 nT		
WMM2005 GeoMag Model							

Data from National Geophysical Data Center (NGDC)

NOAA Satellite and Information Service: http://ngdc.noaa.gov/geomagmodels/struts/calcIGRFWMM

ROSS DOWN/UP Overlay

Yates July 29 Down North Cage

Conclusions

- Expected average mag. field was found
- No large magnetic anomalies
- Seen peaks are likely due to some equipment located at different levels (not all identified)
- Shafts for vertical experiments should have no magnetic constructions
- Now we have input to verify with prototypes that such fields are shieldable to nT levels